# POWER PLANT ENGINEERING (Professional Elective – II)

# B.Tech. IV Year I Sem. Course Code: ME723PE/NT733PE

L T/P/D C 3 0/0/0 3

### Pre-Requisites: None

- **Course Objective:** The goal of this course is to become prepared for professional engineering design of conventional and alternative power-generation plants. The learning objectives include
  - Analysis and preliminary design of the major systems of conventional fossil-fuel steam-cycle power plants.
  - A working knowledge of the basic design principles of nuclear, gas turbine, combined cycle, hydro, wind, geothermal, solar, and alternate power plants.
  - Awareness of the economic, environmental, and regulatory issues related to power generation.

**Course Outcomes:** At the end of the course students are able to:

- Understand the concept of Rankine cycle.
- Understand working of boilers including water tube, fire tube and high pressure boilers and determine efficiencies.
- Analyze the flow of steam through nozzles
- Evaluate the performance of condensers and steam turbines
- Evaluate the performance of gas turbines

# UNIT – I

Introduction to the Sources of Energy – Resources and Development of Power in India. **Steam Power Plant:** Plant Layout, Working of different Circuits, Fuel and handling equipments, types of coals, coal handling, choice of handling equipment, coal storage, Ash handling systems.

**Combustion Process:** Properties of coal – overfeed and underfeed fuel beds, traveling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and draught system, cyclone furnace, design and construction, Dust collectors, cooling towers and heat rejection. Corrosion and feed water treatment.

# UNIT – II

# **Internal Combustion Engine Plant:**

Diesel Power Plant: Introduction – IC Engines, types, construction– Plant layout with auxiliaries – fuel supply system, air starting equipment, lubrication and cooling system – super charging. **Gas Turbine Plant:** Introduction – classification - construction – Layout with auxiliaries – Principles of working of closed and open cycle gas turbines. Combined Cycle Power Plants and comparison. **Direct Energy Conversion:** Solar energy, Fuel cells, Thermo electric and Thermo ionic, MHD generation.

# UNIT – III

**Hydro Electric Power Plant:** Water power – Hydrological cycle / flow measurement – drainage area characteristics – Hydrographs – storage and Pondage – classification of dams and spill ways. **Hydro Projects And Plant:** Classification – Typical layouts – plant auxiliaries – plant operation pumped storage plants. **Power From Non-Conventional Sources:** Utilization of Solar- Collectors- Principle of Working, Wind Energy – types – HAWT, VAWT -Tidal Energy.

# $\mathbf{UNIT} - \mathbf{IV}$

**Nuclear Power Station:** Nuclear fuel – breeding and fertile materials – Nuclear reactor – reactor operation. **Types of Reactors:** Pressurized water reactor, Boiling water reactor, sodium-graphite reactor, fast Breeder Reactor, Homogeneous Reactor, Gas cooled Reactor, Radiation hazards and shielding – radioactive waste disposal.

# UNIT - V

**Power Plant Economics and Environmental Considerations**: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, Load curves, load duration curve. Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor – related exercises. Effluents from power plants and Impact on environment – pollutants and pollution standards – Methods of Pollution control.

#### **TEXT BOOKS:**

- 1. Power Plant Engineering/ P. K. Nag / Mc Graw Hill
- 2. Power Plant Engineering / Hegde / Pearson.

# **REFERENCES BOOKS:**

- 1. Power Plant Engineering / Gupta / PHI
- 2. Power Plant Engineering / A K Raja / New age